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I. INTRODUCTION

The thermoelasticity problems found in mechanics usually revolve
around one of four areas:

1. The measurement of a body's surface temperature from its
surface deformation field.

2. The measurement of thermal gradients at the surface of a body
from its surface deformation field.

3. The measurement of thermal-induced deformazion at the surface
of a body.

4. The measurement of thermal-induced stress/strain at the
surface of a body.
The objective of this report is to present the theory and experimental
laser speckle interferometry techniques that were used to obtain these
measurements. Section II lays the foundation ..r using the laser to
make these noncontact measurements. Since laser speckle interferometry
is used to measure in-plane motion only, certain restrictions have to
be imposed on the theory.

Although the theory is developed for three dimensions, necessary
simplifications are used to reduce this theory by one dimension.
Section III consists of two sample problems that were used to test the
theory of Section II. The thin circular flat plate and uniformly
heated rod are treated in Section II. Section IV presents the

conclusions drawn from this work.
II. THEQRETICAL ANALYSIS
A. General Thermoelasticity Theory

The linear theory of elasticity may be used to predict the
deformation field of a body resulting from thermal-induced stress and
strain. A temperature change at an arbitrary location in a body may be
predicted from the local deformation field. The theory to follow
assumes that the body consists of an isotropic hookean material which
obeys linear thermoelastic behavior. For anisotropic materials, the

theory becomes significantly more involved and will not be treated in



this analysis. Much of the analysis will be presented in tensor form
to simplify the work.
The strain displacement relations from the theory of elasticity may

be expressed as

3U; U 38U, :
SR ) | S . (1)
1] 3xj X ij 9%

Equation (1) expresses the strain field eij to the displacement field
Ui in the rectangular coordinate system g The equilibrium equations,
which relate the stress field aij and internal body forces Bi’ may be

expressed as

90, =« i
s-ﬂﬂ- B. = O . (2)
Xj 1

The following analysis was obtained from reference [1]. The boundary
condition equation, which relates the stress ;n on an arbitrary plane

in a body to the body's internal stress field, is given as

-— -
o, = o0, , (3)

where n, are the direction cosines of the plane. In expanded form, the

components of Eq. (3) become



) = R0 + mo + no

nx XX Xy XZ
c = R0 + mg + no.
ny Xy Yy yz
= + +
“nz 20xz moyz N0y !

For a body free of thermal-induced strain, the stress/strain relations

may be expressed as
1
s T E [oxx - u(oyy ¢ 0zz)]
1 ¢
&y ° F [oyy = e, 0zz)]

€2z %—f [ozz - “(oxx X 0yy)]

€ & l o)
Xy G “xy
- 1
fyz ~ G %z
1
€zx - Tz : (4)

In Eq. (4), E is the modulus of elasticity, n is poissons ratio, and G
is a Lame” constant.

Using the general stress/strain relations and the concept of thermal-
induced strains, the change in temperature AT in some local region Q of
a body may be related to the displacement field in the region Q {1].
First, the thermal-induced strains for a body uniformly heated and

subject to a free expansion is



= asT (5)

where €4 is the local normal strain in any direction t of @, a is the
coefficient of thermal expansion, and AT is the temperature change over

Q. The temperature coupled stress/strain relaticns are [1]

1
€y ~ aAT = E[Gx - u(o

+ gz)]

y

ey - apT = %— [gy = “(oz + cx)]

G = GAE = %: [oz =1 i, = oy)]

e = 20w

Xy .

€ = 2(1 e u) o

vz E yz

€ax £E+f—u_)' O2x : (6)

If all the stresses are temperature induced for a differential

element with only thermal-induced strain, then

EadT = o - u(oy % oz) (7a)

EatT = o - (o, + o)) (7v)

EoaAT = o, - u(o, + cy) 3 (7e)
then

FEadT = (o + 9 0,) (@ - 2y) : (8)
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Subtract Eq. (7b) from Eq. (7a) and Eq. (7c) from Zg. (7b) to obtain

T uoy - oy +po, = 0 = Oy & oy
oy - uo, - o, * uoy = 0 = oy = g
L[] UX L Uy - OZ »
or
_ _ EaAT
UX - oy 14 = l - zu H (9)

Therefore, expansion of the differential element may be prevented by

the application of a hydrostatic stress:

_ -EaAT
Ut = m . (10)

The equilibrium equations, Eq. (2), without body forces present take

the form
90 %0 -1
X+ + Xz = 0
9 ) )
X y z
g 90 0
5 + LN BXZY = 0
¥y az p:<
1] 0 90
BZ+ axz+ ayZ = 0 J (11)
Z X y

Consider a differential stress element with the unit normals, as

given in Figure 1. The stress vectors on the faces n_, ny, and n are



(5]

Figure 1. Differential stress element with unit normals nx,ny,nz.
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y Xy Jy y2
5 i f X (12
= +
Z 9%z * Gyz J T Ogg k i )

respectively. The equilibrium equations may now be expressed as

A =

V.3 =0
X

S

¥-8 =0
Y

T3 =0 . (13)
2

The stress components may now be written in terms of strain components.
Let

G = AT W) 3 (14)

) 2-2 u A ) -
then a 2G 3% + T—_Tu-v p]
_ ?l u - . Y
O'y = 2G {ay + T—_—E'V p‘
o = 2G O E ?’-"
Z 02 = Zi P
B Ju ow
%z Glﬁ-z'+ ’5‘5{‘
_ 9w , 9V
g = G 9—13--0- ?l (15)
Xy 3y 9X
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In Eq. (15), 5 is the deformation vector between the loaded and

unloaded conditions for the solid and is given by

~

5 = ui+vj+wk . . (16)

Substituting Eq. (15) into Eq. (12) yields

Y

- _ — ap £ 2UG Y . -
SX = G (Vu + —x-) + -1—:'—2‘: v p
- = a_‘ 2uG N -

= el H o
Sy G\W+sr)t I T Ve
- = a_‘ 2uG e —

- o u .
SZ = G \Vw + -a—z + T v o] (17)

~ EaAT

Now, with thermal stress persent, a -2 -5, term must be included for

~

each Sz stress vector. Therefore,

2 2 o). s 26 2,27
SX G(Vu*'ax‘*li——_—gv p_li-_-—.fi

-3
-2 - — -2 &
" 3p . _2uG .= % _EoaT
% G(VV+ay>+31_:"ZJV a=d TEZE
2 % G =, = 7 EoaT
3 - 1) ub_ 7.5 -
5, = G\Wwegfrkrox Vet To A (18)
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Now, for equilibrium

ey - Y [N 35‘ - S 2uG - - - ~  EaAT
. S . + . . = .
Mg BV G(V“ ax>”’ I 0 k=l Wl

= 0
— -
veS =0
y
- -
viaE B @ ; (18
Z
B el o« 2 1 s Nk Eo  8AT _
el ¥ Sx‘G{V‘”—Tl-uEV "}‘1-2uax .
= i0r = 2 B 1= 2 Eo  3AT _
v Sy = G{VV+1_2H§-§V p} = 0
= B 0= 2 1 Bl B s Ea  3AT _ ;
V'Sz = G{VW+1_-_§1I§EV O}—l—_—Tugz— = 0 H (20)
rearranging terms yields
2 1 Aa - Ea a2
G {V + l—-:Tu-vv -} p = l——-z-],TVAT H (21)
let
B - (22)

T2
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P §
The deformation vector function p may now be expressed in terms of the

strain potential as

260 = Vo . (23)
. KYry — a2
Since WV + ¥ = W9° = VvV, then E¢. (21) may be written as

2 1 oas | T pa 1 22| ¢
G{v e W }5-5 - {VV+“_2"1- uvvl§

. 2-2ugyed
= = >
Eo¥
or
2 - .
W = lEfUVAT ; (25)
a sufficient condition is that
2 Eo
v = AT . 26
A (26)
Since
o
1 =§5
01 Jee s L3¢5, 33
= misx: tayd Tan K
. Hogfek (27)
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then

NE

ZX

An equivalent expression for Eq. (24) is [2]

(r + G)

(r +G)

(r + 0)

X

Yy

2+ @ w - (3 + 26)a

+ & - (Gr + 20)a

+ @wv - (3 + 20)a

5

(28)

(29)



where ¢ is the dilatation, or

(30)

The relationship between the stress field and temperature change may be

expressed as [2]

2 2
2 R 1 &% a2 9 AT
(1 + L’)V O'x + == + aE {1 = VAT + —z—}
X 39X
2 2
2 91 1+ 2 9 AT
(1 = u)v Gy o ;}? + aE {1 — :l,l VAT + ;?—}

BZAT}

2
2 a1 1 +u 2
@+ v o, * ;;§-+ oF {1 == VEAT + —==

32

2 2

2 1 3 AT

@+ W% 53y < oy
2 2

2 o 1 3 AT

(1 + u)V cyz + 5737 ak 5532
2 2

2 o I 3 AT

@+ wv O g aE S TT

16

8]

+ O

+

o)

[\
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B. Laser Speckle Interferometry Theory

Laser speckle interferograms are most commanly used to make
surface displacement measurements of a deformed body., Figure 2
illustrates the basic method for making a laser speckle interferogram.
When the diffuse surface of a structure is illuminated with coherent
radiation, a grainy speckle effect is imaged by the'eye or film plane
of a camera due to the interference of light from the structure. This
speckle effect is enhanced when the structure has microscopic surface
irregularities. If the optical configuration remains fixed, the
speckle pattern of the test object may be recorded on the film plane of
a camera. Further, if the structure is deformed, the speckle points
shift with the deformation and a second exposure of the deformed
speckle pattern can be made.

Using a technique of double exposure, spec.. 2> interferograms of a
structure are normally made by photographing the speckle pattern in a
reference and deformed configuration. A beam of laser light is then
passed through a region of the double exposure where the local deforma-
tion is desired. As the beam passes through the film, the deformed and
undeformed speckle recorded there diffract the laser light and cause an
interference effect on a viewing screen, A diffraction halo modulated
by light and dark bars of light is produced where the distance 2d
between bars is inversely proportional to the distance between the
undeformed and deformed speckle on the film plane. A normal to the
light and dark pattern indicates the axis of deformation of the speckle.
The theory to be presented assumes that the deformation region illumi-
nated by the laser beam in reconstructiocn is uniform and that the linear
optical theory is applicable,

Figure 3 illustrates the reconstructed diffraction halo modulated by
light and dark bars of light. From the linear theory [3], the displace-

ment in the 6 direction of a point on the body is given as

u = — ’ (32)

17



(A) FORMATION PROCESS

COHERENT LIGHT SOURCE

= ="\'_/ FILM PLANE
DEFORMED BODY (CYLINDER)
—e o
UNDEFORMED BODY PATH OF LASER BEAM
ILLUMINATION

(B) RECONSTRUCTION PROCESS

|_— AXIS OF SPECKLE
f ] DEFORMATION

X @
/4—"—’—‘-

) “— REGION OF

LASER
BEAM
ILLUMINATION

DIFFRACTION HALO
MODULATED BY LIGHT
AND DARK BARS FILM PLANE

VIEWING SCREEN
DOUBLE EXPOSURE INTERFEROGRAM

Figure 2. Laser speckle interferometry configuration.
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Figure 3. Diffraction halo geometry.

19



where S = film scale factor (magnification ratio)
A = wavelength of laser illumination source
f = distance from interferogram to analyzer screen
4@ = distance from central bright spot to first minima
Ue = displacement of the point illuminated by the laser on the

object in the 8 direction

The vertical, Uv’ and horizontal, UH’ components of displacement

may be obtained from Ue as

UH = Ue cos p = g%ﬁ cos 9§
Uv = Ue sing = %%2 sin o (33)
and from the geometry
|
= cos 0
&
4 5
3 - sine . (34)
v
Therefore,
U. = SAf
i~ Jy
Sxf
U = = (35)
v

Laser speckle interferometry can be used to make very accurate
measurements of the in-plane deformation of solids. However, out-of-

place deformation cannot be usefully measured with this technique.

20



Therefore the technique suffers slightly. In many cases (i.e., thin
plates), out-of-plane deformation estimations can be made, which allow
accurate measurements of temperature change to be predicted. In a
typical application, laser speckle interferometry may be used to
estimate the u and v components of deformation, a postulation between
the dependence between the w component of deformation and temperature
change may be made, and the temperature change of the solid may be

estimeted based on the simplification of Eq. (29).
C. Thermal Expansion of a Heated Rod

For a uniformly heated rod (Figure 4), the expansion with

temperature change may be estimated from

Ae = aLAT ; (36)
where Ae = change in the rod length

a = coefficient of thermal expansion

L = rod length

AT = temperature change of rod (uniform)

For a 12-inch rod with a coefficient of thermal expansion equal to
1.66 x 10_5 °C_l, a .502 °C temperature change is required to achieve a
Ae = .0001 inch. Figure 5 illustrates the dependence between Ae and AT

for various L.

Ae

p=ssa——]

Figure 4. Thermal expansion of a uniformly heated rod.

21



70°C

60°C

50°C

40°C

AT

30°C
20°C

10°C

0°C
o 001 002 L0073 . 004 .005

50 "l

Figure 5, AT versus Ae for various rod lengths (L), a = 1.66 x 10" °°C
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D.

Ve

-
p

Thermal Stress Deformation of a Thin Circular Plate Neglecting
the z Component of Deformation

The general temperature/deformation equations take the form

Eo

AT

Il

b

<

= % : (37)

[\

The Laplacian and Gradient in cylindrical coordinates are

—

v

2 2
13 ‘gg 1 3 3 ¢
= =2 {r + +
T 3T 3T ;2 " BZZ
- 8 5 .13 9 °
L HiEEE B 1% : (38)

. For a circular plate with a radial temperature distribution AT = AT(r)

and neglecting the z component of plate deformation,

13 gl _ _Ea
T ar {I‘ BT} 1~y AT
¢ = o(r) only. (39)
For such a symmetric circular plate,
Y "0 %
vé = (40)

23



Therefore,

19 9 Ea
- il = A
r'ﬁ_f{rar} l-uT
3 3 _ rEo
B—f{rg}—l_uAT
T
ra—"’-—/ rBa_ A7 gr + C
ar Ol—u 1

Cl = 0 since';=0atr=0
Y
S ¥ - 1 9_9_"'
pr T 2% G 3T °r (41)
and
T

- 1 rEa =
p = {m/o I—-:_U-AT dr er . (42)

The radial deformation measured with laser speckle interferometry may

be expressed as

- mAfS =
Pp €p T XT) e s (43)
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where

film scale factor

viewing screen to interferogram distance

light source wavelength

8 > = W
m

fringe order

=

e
H

p—
1H

fringe spacing

Substituting Eq. (43) into Eq. (42),

or

mpfS * 1 rEa
e = ATdr e ) (44)
XlI‘; r Q_GF o I
. r
x(z) = {zaﬁ%?s; Fo ATd }

x(r)

1
N
Y )
'tdt\)
!
=
+
Bi=
St
]
0
H

x(r) (45)

For laboratory analysis, x(r) is measured as the first minima to first

minima spacing; i.e., m = 1. Therefore,

1 -
{ “}AfSr 6)

x(r) =
a/ rAT(r)dr

25



E. Thermal Stress Deformation of a Thin Circular Plate with a
Correction for the z Component cf Deformation

Consider a thin circular plate as shown in Figure 6. The

potential function for this case is ¢ = flr,z);

therefore
- 1 = _ 1 a¢_\ 3¢—\
P= Ve = ?G[Ffer+'ﬁez} ’ (47)
and
106 | a¢|, 2% _ Ea AT
T 3 |T57 B T -u
7
2 2
1 %¢ 9 ¢ 9 ¢ _ Ea
?‘5?+32+ 5 = g AT . (48)
r 1A 1
To simplify, let
AT = AT(r);
thus
2 2
199 , 9 ? Ea
?5}_+—%+ % = r—uAT(T) ! (49)
ar 9z
and
~ _¥e _ 1 Jeen Lol | mfS: i P
B 2G E[ar °r ¥ 32 ez} T X&) & T 20ez %2 (50)
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Figure 6. Thermal stress deformation of a thin circular plate
with P and P, components of deformation.



or

1 3¢ _ mrfS

26 5r ~ X(r)

2GmA£S

of @
sie
!

The thermal profile equation then takes the form

1 2GmAfS

2
] 1 37¢ _ Ea
i € I 2Gmh £ 'a_r{m} ¥ S22 T T A(r) : (523

" With laser speckle interferometry, the ;z component of disglacegent
cannot be measured. Only an estimate of the significance of 3 $/92  in
the thermal profile equation can be made. Assume that the plate is of
thickness 2t, which is thin enough that there is no temperature variation
in the z direction. Figure 7 illustrates the assumed deformation pro-

file. From this figure, the deformation is linear with z and takes the

form
-* _ ~ _ 1 a¢l\
pZ = AT 2 eZ T eZ
3% = 20GuAT z
92
2
9 ¢ _
= - 2GaAT ) _ )
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Substituting Eq. (53) into Eq. (52) yields

1 5, M5 s ] _ Ea
= 26 =7 20mALS ~— {3?(?)’} + 26aaT(r) = — AT(T)
and
Ea _ . 71 1 9 1
AT(r) {TTT - ZGa} = 20mAfS {??&_1‘7 + 5?&(?7} ! (54)
Define
_ ] 3 ] 1
B = {-ms—{m}}
. -
B = —“‘f\gis{ u“} ; (55)
then
at(z) = 8p(r) . (56)
Let
= T
then
AT(r) = %31‘%‘)' . (58)
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F. Thin Plate Thermostress Equations in Rectangular Coordinates

In rectangular coordinates,

> T I T SR T
2Gp V¢ = Eex + Wey + E-Z—ez
2 2 2
2 _ Eo, _ 9 ¢ 97 ¢ ¢
\74) = T-:—HAT E aj.+__g+-_?. (59)
X dy 92
By substituting,
"9 3 3 _ Ea
o7 (200,) + 5 (260 ) + 52 (200,)) = T
3p 3p 3p
X a2 1+
5 + ay ok 3% = o {m,AT 3 (60)

In general,

L 9p 3p
_ 1)1 -y X y Z
AT‘&'{1+u}{ax+ay+az} : (61)

For thin plates, there are two independent approximations:

1, p_. = aATZ.

= = AT
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It is important to note that in many instances, Eq. (61) will not

satisfy all the boundary conditions of a problem. For approximation 1,

ap ap
11 -u X y 1 -u
8T &.{i“u}{ax +8y}+{1+u}AT d (62)

th

Let
11 -u
I (63)
11)1 - =
=
i T
Therefore
9p 9p
= e ST <
AT ¥y {ax * } . _ (64)
For approximation 2, let
_‘ 1 1 ees, u
s = & {1——+ u} . | (65)
then
ap 9p
L P YR
AT =y, {5;- + W..] . (66)

Using laser speckle interferometry, approximation 1 may be expressed as

WSSy 5 (1
AT = —?—{5-}?(3-.[{->+-537 3-\7 (67)

and approximation 2 is

i o= em fa N s
T T2 | \dy 3y \dy ) (68)
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G. Numerical Differentiation of the Thermal Induced Deformation
Field to Predict Temperature Change

Suppose the temperature change upon heating or cooling is
desired at some location i,j on a body. The x components Ui-l’ Ui’

Ui+1 and the y components Vj—l’ Vj’ Vj+l

determined, Figure 8 illustrates the geometry.

of displacement have been

. MEASUREMENT POINT

g+l

DISPLACEMENTS ARE OBTAINED
FROM THE LASER SPECKLE
INTERFEROGRAM AT LOCATIONS
5 i-1, i, i+1, j, j-1, j+1 AND
gl USED TO DETERMINE ATij.

e 3, ——— O, ——

Aﬁ' .
hl %11’ M #ujﬁ]_ —
d

e—— § —l— § —

Figure 8, Ceometry for measuring temperature change
AT at location 1,j.
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The approximation to the derivative

T (69)

may be obtained as follows:

Py 1P Uit Ul L Tia m Y%
x - 2 d d — 24

5 V., -V -V Voo o DL,

A N S I N L S S L SR

3y 2 d d 2d

or
U, . =V, . +V, . =V
.+1 ._1 . 1 -_1

p(X,Y) = = = 54 i J . (70)

Using laser speckle interferometry,

p(x,y) = %{ d.Hl v aﬁl + d 1 - d.vl . (71)

i+1 il 5+l il

H. Deformation of Circular Flat Plates in Cylindrical
Coordinates
The following set of equations are derived in cylindrieal
coordinates to relate the change of temperature field in thin circular
flat plates to the corresponding deformation field. For cylindrical

coordinates,
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Ty - 9% ° 123¢ 7 3¢
% = e tEI % T S
v = 12 {r a¢} L1 3% n g 4
i i 13 3
Vep = ;'5;(1'¢r)+;-ag(¢e)+a—z(¢z)
The derivatives of the cylindrical vectors e
doe = -e
986 9 T
a ~ ! ~
36 °r s
Since
—N
= _ Vé
p 3G )
then
G {V2 *I—T$VA‘} ‘; = {I-_-E_:‘g?‘r} —VLAT
-
{VZ“I‘_T} uvv‘} P w)a g
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and gr are [4]

(72)

(%3)

(74)

(75)

(76)

(77)

(78)

(79)

(80)



Let

Now Eq. (80) may be written as

=

2 (1 + )

- 2u

- -
{Vz + YVV" p

Expanding Eq. (83),

13 .
T 9r

8 ~
+ — +
Y(ar er

{

e
rTr

9

—
ar

H |
Q

~

+ ul
Po%e

0

-
= BVAT

82

N

36

e

._.,2.+

Q@ |

A~y
) s
€0 T 3z

>

) s

or
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(82)

(83)
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Further expansion yields

or r 906 0 9%z z}
AT 1 3AT ©
avom—— = —— t o ma—
¥ 92 pz} B { r er r 299 ee

In cylindrical coordinates,

3 = 9p_, A

— T e—— +

39 <9r r) 38 °r T Pr%

2 ~ a20 ~ ap ~ ap A ~
g ( ) = S BBl & e -5
72 \Prp 2 "r 36 8 36 %% " PrS
36 30
a ~ ap -~ -~
30 ("eee) ~ 38 % " Per

2

37

3 N 3 Py « Bpe - P,
‘7("9%) ST R T Sy g & T

~

Po%e

(85)

(86)

(87)

(88)

(89)



Substituting Eqs. (86), (87), (88), and (89) into Eq. (85) yields

T P PO T A T |
T or or | r T or T \P6%e T or or z

2
+1a"e(;_za"eze_"e:3
22 T8 273 r~ 26
r 236 T r
1 BZQZA szrA szeA
+ e + e + e
2302 2% g2 T N
32p
z 7 3 153 i 13 3 i
+822 ez+y_r{§:—r'<mr>+?'5§'pe+ﬁpz} ®r
Y3 J13 ( 13 9 .
+rae{?ar o) " T35 P "5z P2f e

(90)
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Assume for the cylindrical plate that due to symmetry, = 0,

o
Therefore,

2 2 2
Pp = lapZA Bprn sz,\
- e + e + e + e
2 r ) 2 2 2 T 2 z
r r 2386 92 92

D
+

2
1 [ %=le Lup [ %]y o Yes.
T 3T 9T r . T 3r or 2z ;? T aZZ 2

(91)

(92)



From Eq. (92),

AT _
55 - O . (93)

Examine the ;r variation in Eq. (92);

ap 3 p_e ap -
123 T rr 3 13 7 _ AT »
;'ﬁ{r—r }er = *Ys?[Fa—r(""r)”_az }er‘ 837 o (94)
or
: ap P ap
19 T r 3 13 zl _ AT
;ﬁ{r—ar}'p*Yﬁ{;ﬁ@"r)*—az}‘Bar I
Expanding Eq. (95),
32 dp o 9p P P
Pp 1 r r 9 r r z AT
= - iy L == 5 === 6
= tr3r T2 YsE 5T v Y 3oz B 57 (96)
or g
2 2 2
. )
o, 1%y 0 e e P% v a"z=BaAT (97)
2 T 9T 3T Y8 T 9r YUY 375z oT
ar r ar r
2 2
9°p P P ap
1 r r Z AT
(= Y=gl ) = = QTN ST g = B 88
or r
329 op p P
r S r z AT
G F 2 Vwwm ~ Pw 72
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In general, assume p = azaT(r). Then

2
9 p
z ) _ 9AT
Y 3roz Y-B?(GAT) - Y37 ’ (o)
and
2
ap op p
r 1 r T _ AT
@) e Em - B e (e man) 2T (101)
ar r
2
] ]
r,1 % Pl I8 -oyloar (102)
82 T ar 2 1++vy | or
r r
From Eq. (102),
20 + 2ua @
= 1 -2 1 ~ 2 -1
H = L L = (103)
ok =
= 211 -u
r = a—{m} . (104)
Equation (102) may now be expressed as:
2
9 p 9p P
SR et rl _ O9AT
Py " sm “ o3 = T (2050)
r T
320 P
r 2 r _ AAT ;
T ;;r"a—f{‘r—} T Rt i (6.
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and

ap p
] T r{ _ 3AT
I'sg {ar M- } T 3T . (107)
Finally,
ap p
T
) {5?‘ + ;E} +c = AT(r) : (108)

Equation (108) is based on the following assumptions:

AT = AT(r)

: Pr T or(r)
pg = 0
By = azAT(T)

I. General Thermostress Equations for Thin Plates in Rectangular
Coordinates

The general thermostress equations in rectangular coordinates
have the form

G {v2+1_f.2.1.1.'€\'7’-} P = I-EEZTV'AT ; (109)
or if
- 1 ) _ 1 _Ea _ w
BTt Y Y T ErSxH Sha 2
then
(v2 + \W9-) 5 = gTaT . (110)
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Expanding Eq. (110) yields

A

& g 2 d
> (le tegd Y pzk) & {5; i+ 5=

3X 3z
” ap 9p P
9 X y z\ _ 9AT ¢ AT
+‘¢Ek]| *fy*az]‘slarl 3y
or
32p 32p azp 32p 32p
> 4 G Yoam . X y Z
ax2 5 9% x93y 9X9Z
32p 82p 32p 82p 82p
I+ I+ I+ v X e L+ 2
ax2 2 aZ? dyox 3y2 dydz
32p 32p 32p 32p 32p
2 + g Y 2 e I+ Z
ax2 az2 9Z3X 9293y -

Now, if for thin plates

Pz

=

aAT

azAT(x,y) ;
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(114)
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Assume G and py are not functions of z. Then

2 2 2 2
) Py . 3Py . d Py . 9 py N w QAT 8 AT
) Y ) 5%0y | O B% X
oX oy X
2 2 2 2
9 p 9 p 9 p 9 p
—L =LV \oy A+ - B
9X oy B 3y J g
Simplifying terms,
. 2 2 2
3%p 3%p 3%p
) X X y AT
“(1+'Y)_a;§_‘+a_y?_+yax8y (6 - vo) 55~

2 a2

9 p p
Y J 4
(1+7) "2 T Y 500y
oy 9X

n

AT
(B = YG) 35—

(117)

(118)

(119)

(120)

J. Thermal Stress Deformation of a Thin Circular Plate With a

Modified Correction for the z Component of Deformation

The problem associated with assuming that the e, component of

deformation obeys Eq. (113) is that the I contribution of deformation

1o the o, component is not accounted for, The following derivation

assumes that the material comprising the plate is largely incompressible

and that changes in e, may be directly related to changes in the I

component. The coordinates for a
For the thin circular plate, at r

the deformation is

ap

fo8 s ot |

circular plate are shown in Figure 9.

the deformation is I and at r + Ar

4d

(3521, )



T + AT

Figure 9. Coordinates for a circular plate.
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The initial volume Vi of the material contained between r and r + Ar is

v, o= [II (r + Ar)2 - Hrz] i , - (122)

where t is the plate thickness. Upon heating or cooling the plate, the

new volume is

2
apr 2 ;
Ve = L+ Ar +p + o= Ar —T[(I""pr) i . (123)

1
where t 1is the new plate thickness.

- Equating terms,

, 2 2l
t :
H(r+pr+Ar)—II(r+pr) t

1}
e —,
=
7~
H
+
[>d
H
S’
[y
1
=
H
ot
ct

t

2 2 2 . 2 2 2
[r +pr + Ar +2rpr+2rAr+29rAr—r-pr—2rprt

= r2+2rAr+Ar2-r2}t
(1

24)
Let
P! = P, teE 2 (125)
apr
where e = —= AT
or

46



Then
= (pr + 8)2 = p "+ 52 + 2epr . (126)
Substituting terms,

t

t (52 + 2epr + Ar2 + 2re + 2rAr + 2prAr + 2Are)

= (2rAr + Ar2> % (127)
i 2
%_ - 2EAE + 8¢
<
E3--1-‘-AI' +2 -af-ILAI‘ p..+ Ar2+2r -a—pz-Ar + 2riAr+ 2p Ar+2Ar2 -a—pz-
ar ar r ar b} ar
' (128)
Simplifying and neglecting small terms,
1
t r - 1
T 9p op ' op (129)
0 _E'. + r _E. +r+p 1+ oy
r ar or r or
Now,
% W,
2— = ap . (130)
211 + i
ar

1
And at z = t/2, the deformation is t /2 -~ t/2.
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Using the correction term of Egs. (114) and (130),

P, (r,z) = azaT(r) + Zap = Ig
T
apr
Z -2 - B o———
P, (r,z) = azAT(r) + 5 L = z [eAT(z) -
T
C or

The thermostress equations in c¢ylindrical coordinates are

820 ap P 820
r 1 r r Z  _ 9AT
(1+y) >t T3 2T Y T B 37
or r
2 2
3 p P ap
r 9 r Z AT
(1 * Y) arﬁ * ar <?T> 4 Aroz 8 or
Substituting Eq. (132) into Eq. (133),
2
3 p p 3ap
R o r 9 AT
(1”)8—;2-*5;(;‘)”3;“”‘? '
2 2
ap P dp
r 9 r r oAT
(1+Y)a_r_z.+,a_l_‘.(}_) (1+Y)_Y;-;§_+ a?i.r—
320 p
r P r oAT
+ —_— ) ——— = = e
ar2 (1 +v) 5T {r ] (8 - ay) =
ap
AT _ 9 r
(B-ov) g = wmiaw * (V) &

(131)
Bpr
— . (132)
(133)
AT
o
(134)



Integrating,

ap P
_ 1 Y r )
& = B - ay {BI‘ +(l+'y)r}+C i (135)

Suppose the plate is infinite in extent; i.e., @ r = =, Py = o,

apr/ar = 0, and AT = 0. This implies that C = 0. Therefore,

op p
b - __1_{§.rz+<1+y);:} (136)

for an infinite plate,
K. Least Squares Method of Differentiating Experimental Data

Assume that N measurements of radial deformation (pi) were
taken in some region of a thin:cireular plate. Assume that the deforma-

tion in this region is given by

3

B = g E Br + Cr + D : (137)

Forming the square of the difference (difference function) between the

curve given by Eq. (137) and the experimental data [5],

N (3 5 2
8 = 2 [pi - (Ar:.L + Br,” + Cr, + D)] . (138)

i=1

Differentiating with respect to the unknows to obtain an extrema,
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Let

and

aai N 3
= - 9 - L [pi‘Ari r
i=1
38, N 3
aai N 1 3
__.__aC = 0 = .E pl_Ari -
i=1 L
aai N 3
v - 0 - L [pi_Ari
i=1

N
L= 1
i=1
rearrange terms to obtain
Aﬁr.6 + BEr,5 + CEr.4 + DEr.3
i i i i

4 2

AEr.5 + B3r, " + CEr.3 + T3r,
1 1 1 1

AEr.4'+ BEI'.3 +'CET.2 + D3r,
i gl i g

Br.” -~ Cr,

. Br, - Cr,
i i

]
M

O

H

fl
M

°

H
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Let R6

R5

R3

R2

R@

Then S3

S2

S1

5@

ARG +

AR5 +

A*R4 +

A-RB +

B*R5

B-R4

B*R3

B-R2

S3 = Zipiri3
S2 = Zpiri2
S1 = Epiri
s¢ = Lo;

+ C*R4 + De*R3

+ C-R3 + D-R2

+ C°R2 + D*R1

+ C-R1 + D.R{

Equation (142) may be expressed

Equation (143) may be solved for A, B, C, and D-~thus giving the

equation for P with a least squares curve fit.

R6

RS
R4
3

R5
R4
R3
R2

R4
R3
R2
Rl

in matrix form as

R3 A S3
R2 B S2
° =
Rl C Sl
R@ D SP

(141)

(142)

(143)

These curves can then

be more readily differentiated in the thermostress equations to obtain

better results.
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L. Polynomial Approximation to the Thin Plate Thermostress
Equation in Cylindrical Coordinates

The thin plate thermostress equation in cylindrical

coordinates may be given as

ap p
r{ﬁ—r-+-r—r-}+c = a(r)
_ 2L -u
r = E{m} . (144)

The difference in temperature Tr—R between location r and RO is

giﬁen as °
apr pr Ro
ATI‘-R = T -aT- + ;— © . (145)
o r
Suppose
- 21
pp = Ar” + Br + o (146)
for a thin plate. Then
apr ' ’
P = 2Ar + B 3 (147)

and



C Ro
AT = T {ZAr + B+ Ar + B + —]
r-R r
o] e
© Rb

ATr-R = T {BAr +2B + ?}

o] r
AT = r{3r +28+% _3ar.-25-°% (148)

‘ r-Ro o Ro r )

But C = O, since G =0 at r = 0, Therefore

| ATT__RO = aar R - r]

4T, g = M [r-8] . (149)
Now,

ap P

AT _ 3 T 70

v T {5}—+r ] : (150)
Suppose

o, = Ar® + Br (151)
then

3 _ 3AT
rd-{ear+B+ar+nf = 20 (152)

or
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AT
= = .JGAr ) (1:531)

Equation (153) may be used to estimate thermal gradients from

experimental data.
III. EXPERIMENTAL EXAMPLES

The following three cases were used to test the theory presented
in Section II, Two problems are treated in this section:

a. The heating of a thin circular flat plate at its center by
external heat generation.

b. The uniform heating of a rod.
The thin circular flat plate problem is treated in Sections IIIB and

ITID, and the uniform heating of a rod is treated in Section ITIC.
A. Computer System for Analyzing Laser Speckle Interferograms

Figure 10 illustrates the automated system used to analyze
laser speckle interferograms. A déscription of the system and its
functional components are documented in reference {3]. The system was
used in the manual mode, and the computer programs used to control the
system are listed in the appendix.

B. Temperature Change Measurements for a Heated Circular Flat

Plate (Case I)

This test was conducted to examine the accuracy in measuring
a temperature change AT in a circular flat plate using laser speckle
interferometry. The plate may be classed as a thin circular flat plate
subject to a heat source located at the center. The heat source was
obtained from electrical resistive heating located at the center of the
plate. The resulting temperature profile of the plate tends to be a
function of the radial distance from the center of the plate.

Figure 11 illustrates the basic laboratory configuration for
measuring temperature changes in circular flat plates subject to a
radial symmetric temperature distribution. In the test, an 18.0-inch
diameter, 0.125-inch-thick aluminum plate (Figure 12) was mounted onto
a heater element support (Figure 13). The heater element support was

also aluminum and was covered with a 0.25-inch-thick layer of

24



Figure 10. System used to analyze laser speckle interferograms.
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1, — 20 —UNC — 2B
! 2 PLCS

“ 4032 ==

NCTES:
I. REMOVE BURRS, BREAK SHARP EDGES.

UnEST OTHERNIOE SPECIICD U.S. ARMY MISSILE COMMAND 3
LostaAnces TaeacTION]z REDSTONE ARSENAL, ALABAMA {
3 PLACE DECIMALS = I

2 PLACE DECIMALS +, 0] |
'

WATERIAL OATE 7 DEC_, 1979

PREPARED| A DEMASEY THERMOSTRESS _1
ALUM e

APPROVEO ov omoER of ca, |SIZE|[CODE IOENT NOJDRAWING NO.
UsSamicoM
NEXT ASSY USED ON T B C 18876 SK-NDT-03%6
APPLICATIDN SCALE 1/, § Jsweer | of 2

Figure 13. Heater element support.
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compressed K-wool. Nichrome wire was wrapped around the circumference
and length of the support to serve as a heater element. Again, K-wool
was wrapped around the wire to electrically insulate it from any metal.
The plate and heater were then inserted into the plate heater unit
holder (Figure 14), In order to provide electric power access,
0.13~inch-diameter holes were provided in the holder. The plate heater
holder was then bolted to the heater unit support base (Figure 15),
which was then bolted to an NRC air table for laser speckle work.

In order to determine the accuracy in measuring temperature fields
with laser speckle, a series of .0625-inch-diameter, .095-inch-deep
holes were drilled at various radial distances on the circular plate
(Pigure 12). Copper-constanton thermocouples were attached in each of
thése holes using a conductive epoxy. This compound is available from
Ablestik Laboratories, 833 West 182d Street, Gardena, CA 90248, and
consisted of the following:

. Ablebond 163-4, tart C pure.copper powder
{4 parts)

. Ablebond 163-4, part A resin component
(2 parts)

. Ablebond 163-4, part B hardener component
(1 part)

Figure 16 illustrates a typical thermocouple attached to the aluminum
plate. It is unfortunate that a significant amount of heat can be
conducted away from the thermocouple attachment point with this design,
but it was the best known alternative available. A better alternative
would have been to use a semiconductor thermal radiation detector or
liquid crystals, but these were not readily available. Figure 17
illustrates the complete assembly of eight thermoccuples which were
mounted on the circular flat plate. Each of the thermocouples, includ-
ing a reference at 0° C, was individually switched to a Leeds and
Northrup 8690 potentiometer, using the eiectriqal skematic shown in
Figure 18. The rotary switch is shown in Figure 19. A voltage divider,
using 1-kQ resistors, was used to plot thermocouple output versus

thermocouple number. The reference thermocouple temperature at 0° C
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Figure 16. Attachment of iron-constantan thermocouples to
aluminum plate.
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Figure 17.

Ccnrlete assembly of thermocouples on the
circular flat plate.
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Figure 19. Thermocouple rotary switch.
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was obtained from a reference bath (Figure 20). This device could
provide a cold junction for several hours before any ice replacement
was needed. Figure 21 is a photograph of the Leeds and Northrup
Millivolt Potentiometer. '

In order to supply electrical power to the circular flat plate
heater element (Figure 11), a Redlake Labs Autotransformer at about
50-V-a.c. output (variable) was used. A piece of Nichrome wire was
placed in series with the heater element to observe the plate heater
performance. When the "glow wire" was a bright red, the proper current
flow was presented in the heater assembly. At this point, the maximum
rise in plate temperature with time was observed.

Laser illumination of the plate was accomplished by expanding the
output of a 6328 K spectra physics Model 125, 50-mW He-Ne laser. A
spebtra physics Model 332 spatial filter was used for this purpose.
Exposure control of the laser was performed using a Jodon ES-100
electronic shutter (Figure 22), The output of the laser was passed
through a horizontally oriented cylindrical lens to produce a narrow
concentrated rectangular beam of light, which measured 10.2 mm by
228.6 mm in the horizontal O-direction on the circular plate. Beam
control was performed using two A/4 front surface mirrors and an
aperture for beam expansion.

In the test, an attempt to measure the temperature rise at station
#1 (r = 1.1 in.) was made. Two 32-~second exposures were made using
AGFA GAVAERT holographic film. The initial station #1 temperature was
81° ¥ when the first.exposure was made. The plate was then heated to a
thermocouple measured temperature of 112° F, and a second laser
exposure was made. The net temperature change at station #1 was 31° F,
as measured with the thermocouple.

Test Results - Case I:

9.0

S = T8 " 2.3195 for a 9-inch-radius plate
£ = 7 in. ’
Ti z 81° F
measured with thermocouple
Tf z 112° F
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Figure 22. Jodon ES-100 electronic shutter system.
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Table 1 illustrates the data obtained from the interferogram. For
this data, r' is the radial distance on the interferogram and r is the
radial distance on the plate. x'(r) is the measured fringe spacing.

The sign associated with x'(r) determines the direction of plate trans-
lation upon heating; (+) refers to motion in the positive X direction.
Table 2 shows the data of Table 1 corrected for true relative
trénslation, with the center of the plate having zero translation.

Figure 23 illustrates the variation of y(r) with r. In order to
differentiate y(r) with respect to r, a quadratic curve fit of Figure 23
1s utilized.

y(r) = §§;7 £ Ar + Br2 + C . (5ia)

The data for Eq. (72) may be tabulated as

B y(r)
.30 0
1.23 07662
2.44 .19012

Solving the simultaneous linear equations in A, B, and C results in

- 07415
B = .0054
C = -.02273
and
v(r) = .07415r + .0054r° - .02273
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TABIE 1. CASE I INTERFEROMETRIC DATA
g % x'(r) 1/x'(r)
.13 .30 -2.86 -. 34965
1.05 2 ~3.68 -.27173
.53 1273 ~3.48 -.28735
1,63 3.78 ~4,. 68 ~. 21367
2.19 5.08 -7.02 -.14245
B\ 7.98 +5.75 +.17391
3,88 9.00 +3,93 +.25445
TABLE 2. CORRECTED CASE I INTERFEROMETRIC DATA
r 1/x(r) y(r)
.30 0 0
Dl .07792 .19012
1.23 .06230 .07662
3,78 .13598 . 51400
5.08 .20720 1.05257
7.98 .52356 4.17800
9.00 .60410 5.4,3690
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Now from Eq. (55),

s - MS|1-w
Za u 4

= 63288 = 2.4913 x 10"° in.

where A
f = 74.0 in.
S = 2.3195
a (Aluminum) = 24 x 10'6/°c
p (Aluminum) = ,3
Now,
5 Ygr) = ,07415 + .0108r
r
8 = 207.86
%.a Ygi) = .o782
r=1,1 in.

And from Eq. (58),

AT(r) = 207.86 (.0782) °C = 16.25 °C
AT(r) = 29.25 °F measured with laser speckle interferometry
AT(r) = 31 °F measured with a thermocouple

Figures 24 through 27 illustrate the laboratory configuration without

the cylindrical lens and front surface mirror optics present.
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Figure 24. Illumination direction for the flat circular plate.
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Figure 25. Side view of Case I experiment illustrating the laser,
heating system, and thermocouple read-out system.
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Figure 26. Case I optical configuration without cylindrical
lens assembly.
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Figure 27. Back side of circular flat plate illustrating thermocouples.
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C. Temperature Change Measurements for a Heated Copper Bus Bar

(Case II)

In this experiment, a copper bus bar was submerged in a heated
water bath and a laser speckle photograph was taken of the heated rod.
The water was then replaced with cool water, and a second laser speckle
photograph was taken. The double exposure interferogram was then
analyzed, and the rod temperature was predicted based on various
theories presented in Section II. The rod was in a state of uniform
thermal contraction when cooled.

The specimen was illuminated by a Spectra-Physics 166 Argon laser
operating at .9-watt power. For the test, the following data were
observed:

+ Initial water bath temperature = 1.280 mV = 89.7° F.
"« Final water bath temperature = .83 mV = 69.9° F.

Length = 9.95 in.
+ Bus bar dimensions Width = 1.00 in.
Depth = 0.25 in.

- Approximately 5 in. of the bus bar was exposed in the water bath.
AGFA 10E56 holographic emulsion film was used with two 1l6-sec

exposures.

o Af = 2.4913 x 1077 (130) = .00323869 it (reconstruction of
interferograms was with a He-Ne laser).

The copper bus bar is a glass beaker immersion tank, the Case II
laboratory setup, and a side view of the Case II experiment are shown in
Figures 28, 29, and 30, respectively.

The data obtained from the interferogram is illustrated in Table 3.
For this table,

L = distance from an arbitrary reference point on the
interferogram

longitudinal specimen deformation at location L.

fringe spacing in the interferogram analyzer plane.
AL

m

net longitudinal deformation measured from the arbitrary
reference.

A1l data was measured in the symmetry plane of the specimen.

78



Figure 28. Copper bus bar in glass beaker immersion tank.
(Note thermocouple leads in the tank used to
monitor water temperature. )
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Figure 29.

Case II laboratory setup.
(Note water drainage sys-
tem, thermocouple tempera-
ture read-out equipment,
and the optical system.)



Figure 20. Side view of Case II experiment.
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TABLE 3. CASE IT LABORATORY DATA

(iﬁ.) (iﬁ.) (ig.) s (;n.% " P
0 5.54 .0005846 0
5 5,00 .0006477 6.710 x 10™°
1.0 4.30 .0007531 1.685 x 1074
1.5 3,94 ,0008220 20378 = 1074
2.0 3.76 .0008613 2.767 x 1074

For this particular case, the temperature change can be approximated

from

>

]

]
Q|+

AR
— . (155)

The results of this case are shown in Table 4, where

Q
I

G, s
= 7.827 x 10 /°F
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TABLE 4. CASE IT TEMPERATURE MEASUREMENT RZSULTS

I, A% A% AT
(in.) (1n.) T (°F)
0 0 - -

5 6.310 x 1077 1.262 x 1074 16.12
1.0 1,685 x 1074 1.685 x 107% 21.52
1.5 2.374 x 1074 1.582 x 1074 20.21
2.0 2.767 x 1074 1.383 x 1074 17.66

The average temperature change computed using Eq. (155) was
18.87° F, which is about a 4.8 peréent difference from the thermocouple
reading of 19.8° F.

D. Temperature Change Measurements for a Heated Circular Flat
Plate (Case III)

This test was identical to Case I. The data for this test

case 1is illustrated in Table 5.

TABLE 5. CASE I TEST DATA

r (in.) Py (in.)
. 30% ~-,001495
1.23% ~-.001228
2.44 -.001161
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For the data in Table 5 marked with an asterisk, assume that

Pp = Ar + B

Therefore,
-.001495 = . 3A +B
-,001228 = 1.23A + B . (156)

From Eq. (156),

2.8709 x 1074

s
1

-1,5811 x 10_3

os]
1}

B is the offset error in the data of Table 5, due to a uniform trans-

lation of the test fixture. Therefore, the Pr component of deformation
in Table 5 should be corrected by 1.5811 x 1072
uniform translation. The corrected data, pr', is illustrated in

Table 6.

in. to account for this

TABLE 6. CORRECTED TABLE 5 DATA

1

r Pr Pr
.30 -.001495 .0000861
1.23 ~,001228 .0003531
2.44 ~.001161 .0004201
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Now at location r = 1.23 in.,

;3 = 3‘531.2310_4 = 2.8707 x 107
;;3 - 3.531 x 1Sj23_-8:§1 x 107 _ T R
- R N
:;;E = 1.7123 x 107%
avg

From Eq. (108), with ¢ = O for an infinite plate solution, . .

op p
_ r r
AT = 1" {‘—ar + _r } . (157)

And from the experimental data,

65625 {1.7123 x 1074 + 2.8707 x 10“4} °F

AT =
AT = 30.075° F at r = 1.23 in.
AT = 31°F at r = 1,10 in. (thermocouple measurement )

From the above results, agreement is very good,
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IV. CONCLUSIONS

The theory for laser speckle interferometric thermoelasticity was
presented in Section II. Two specific problems and three methods of
data analysis were presented in Section III. Laser speckle interferom-
etry may be used to measure the in-plane deformation of a body, but no
information about the out-of-plane component is obtainable. This
necessarily implies that certain simplifications to the theory are
needed. After making estimations for the out-of-plane component of
deformation for a body, the general thermoelasticity equations are
solvable, _

Section IIT illustrates that for the case of thin plates and
uniformly heated rods, accurate temperature measurements can be made.
As long as the deformation of some region in a body is attributed to
localized heating, then accurate temperature measurements can be made.
Major problems occur when the deformation is attributed to thermostress
generated elsewhere in a body. This case occurs at the outer radius of
the circular flat plate where the deformation and derivatives of
deformation are not zero. This is the result of thermostress generated
at the center of the plate and is very difficult to analyze.

The thermostress equations usually require some form of
simplification, for they involve partiai derivatives of the deformation
field. After a suitable set of approximations are made, the thermo-
elasticity equations may be made more amenable to analysis. Thermal
gradient measurements are easily made, since many approximations to the

deformation and temperature fields are not required.
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APPENDIX

Computer Codes Used to Analyze
Laser Speckle Interferograms
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Computer Code - 1

O =G IRCULAR LASER SFECKLY INTERFERCMET Y READER

0

~0

~-=WRITTEN RBY:! JOHN A. SCHAEFFELy H,

DIMENSION XY(10s50) o XX(10s30) e ¥Y(10y30)
WRITE(Ss1)

FORMAT(/ INFUT R1+sFNsT1esTMeNsMrsI5-4F5.0,3127)
READCS»2) R1sRNsT1sTHMsNsiMeIS
FORMAT(4FS.09s3212)

WRITE(S93)

FORMATC(’ INFUT SFsE-2F10.,07)

READN(Ss4) SFE

FORMAT(2F10.0)

XL=0.

YL=0.

DR=(RN-R1)/FLOAT(N-1)
DT=(TM-T1)/FLOAT(M-1)

00 7 I=1sM»s1

00 7 J=1sNsil

T=T14+FLOAT(I-1)%DT

R=R1+FLOAT(J-1)%DR

TF=3.,14159%XT/180.

X=(R/SF)YXCOS(TF)

Y=(R/SF)YXSIN(TF)

IXX=INT((X~XL)/.001)
IYY=INT((Y-YL)/.001)

IFCIXXWNELOQ) CALL XADV(IXX,IS)
IF(IYY.NE.O) CALL YADV(IYY,IS)
XL=XL+FLOAT(IXX)>/1000.
YL=YL+FLOATC(IYY)>/1000.

WRITE(SyS)

FORMAT(’ DATA-2FS.0:7)

READ(Ssy6) XSsFS

FORMAT(2F5.0)

XY(IsJ)=SFXE/XS

XXCIs D)=XY (I sy J)XCOS(FSE%X3.,14159/180.)
YY(TIod)=XY(IsyJI)XSIN(FS%3.14159/180,)
CONTINUE

00 9 I=1sMsl

D0 9 J=1sNsil

T=T1+FLOAT(I-1)%XDOT

R=(R1+FLOAT (J~1)XDR)

WRITE(S98) IsJdsToReXYC(Is D)o XXC(Iodd s Y (ind)
FORMAT(’ I=’/sI393Xy Jd=’9I393Xs ANGLE='2F8.253Xy»
1/XY="3F10.,693Xs "XX="sF10.6s3Xs’'YY='F10.:6)
CONTINUE

IXX=~INT(XL/.001)

IYY==INT(YL/.,001)

IF(IXX.NE.O) CALL XADV(IXX»10)
IF(IYY.NE.O)Y CALL YADU(TIYY,»10)

STOF

END

9l
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o U S

FY =

Gd

fexd

4

Comput

er Code - 1 (Continued)

SURROUTINE YADV{IS: LR
IS=ND., STEFS (+=FUWlly~=REV)
IR=ANVANCE RATE OF STAGE
X=0,

IF(IS.GT.0) GOTD 3
IFP=TARS(IS)

DO 2 I=1s1Fvs1l

. CALL IFORKEC("1867772,%020000)

g 7 K=leIRel

=GIN(X)

CALL IFOKE(*18677722"000000)
no 1 J=1sIRs1

Y=8IN(X)

CONTINUE

GOTOD 6

CONTINUE

ng s Ii=1+1%+1

CalLl. TFOKE(* 167772010000

"I0 8 KRK=lsIRel

Y=GIN(X)

CALL TFORE("1&7772,°000000)
ng 4 JJd=1,IR»1

Y=GIN(X)

CONTINUE

CONTINUE

RETURN

END

SURROUTINE XADVIS«IRD
I8=N0. STEFS (+=FUWlir-=REV)
IR=ANVANCE RATE 0OF STAGE
X=0,

IF(IS.6T.0) GOTO 3
IF=IARS(IS)

00 2 I=1l,IFs1

CALL IFPOREC"167772»"100000)
00 7 R=LlyIRe1 -

Y=5IN(X)

CALL IFOKE(*1&7772y*000000)
no 1 J=1,IR»1

Y=GIN(X]

CONTINUE

GOTO &

CONTINUE

N0 5 1Il=1s18¢1

CALL IFODRE("1&77722"040000)
g 8 KR=1ysIR»-1

Y=GIN(X)

Call IFORE("1672772: 0000001
ng 4 Jid=1sIRe1

Ye=G [HOX)

CONTINUE
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Computer Code -~ 2

CYLINDRICAL COORDINATES

LASER SFECKLE INTERFEROMETRY
TEMFERATURE CALCULATOR CODE
WRITTEN RY JOHN A. SCHAEFFELy JR.
DIMENSION AC2+2)

WRITE(S+1)

FORMAT(’ INFUT?! SF+E»FSI-3F10.07)

. READ(Ss2) SFsEsSI

S LIRS

FORMAT(3F10.0)

WRITE(S»4)

FORMAT(’ INFUT RsTHETAsDR-3F10.07)
READ(S»2) RyTeD
X=R¥COS(TX3.14159/180.)-11
Y=RXSIN(T%3,.,14159/180.)
IX=INT(X%1000./5F)
IY=INT(YX1000./5F)
IR=INT(D%1000./58F)

IRR=2%IR

SIF(IXWNE.O) CALL XADV(IXs3)

4]

10

11

IFC(IY.NE.O) CALL YADU(IY»D)
o 7 I=1y2r1
WRITE(Ss3)

FORMAT( INFUT HORIZONTAL "FRINGE SFACING-FG.0:)

READ(Sy6) IH
FORMAT(FS5.0)
A(1,I)=8FXE/DH
CaLL XADV(IRR,S)
CONTINUE

IB=-3%IR

CALL XADV(IRs3)
IRRR==-IR

CALL YADV(IRRR:S)
0 10 I=1+2y1
WRITE(S+8) .

FORMAT(’ INFUT VERTICAL FRINGE SFACING-F3.0:7)

READ(S»%) DV

FORMAT(F3.0)

A2+ I)=8FXE/DV

CALL YADVC(IRRyS)

CONTINUE

CALL YADV(IE:S)

IX==IX~-1IR

IY=-1Y

IF(IX.NE.0) CALL XADV(IXy3)

IF(IY.NE.O) CALL YADVC(IY»3)
DT=SIX(A(1s2)-AC1y 1)HA(Z2y2)=A(22 1))/ (2 XD
WRITE(Ss11) DT

FORMAT(’ DELTA TEMFERATURE CHANGE=’sFé.1)
GOTO 3

STOF

END

SUBROUTINE YALDV(ISyIK)
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Computer Code - 2 (Continued)

e 18=N0. STEFS (+=FWhy-=REV)
Cmm———TR=ADVANCE RATE OF STAGE
X=0.

IF(IS.6GT.0) GOTO 3
IP=IARS(IS)
0o 2 I=1s1IFs1
CalLL IFOKE(®"167772y"020000)

DO 7 K=15IR»1

7 Y=8IN(X)

CALL IPOKE("167772y"000000)
0o 1 J=1sIRv1

1 Y=8IN(X)

2 CONTINUE
GOTO &

3 CONTINUE

Do 5 IIi=1-18-1
CALL IFORE("167772y"01G000)
- D0 8 KR=1yIKsl
8 - Y=8INCX)
CALL IPORKE("14677725%000000)
0o 4 JJd=1+IRs1
Y=8IN{(X)
CONTINUE
CONTINUE
RETURN
ENI
SURROQUTINE XARV(ISyIRD
=== I8=N0, STEFS (+=FWly-=REV)
=== IR=AOVANCE RATE OF STAGE
X=0 .
IF(IS.6GT.0) GOTO 3
IF=IARS(IS)
ng 2 I=1+IFsil
CALL IPOKE(®*1467772y"100000)
Do 7 K=1lyIRs1
7 Y=GIN(X) )
CALL IFOKE(®167772s"Q00000)
ng 1 J=1sIRs1

o>

1 Y=8IN(X)

2 CONTINUE
GOTO &

3 CONTINUE

ng 5 Il=15I5»1
CALL IFOKE("167772s"040000)
00 8 KR=1sIRs1l
8 Y=SIN(X)
CALL IFORKE{"1677725"000000)
no 4 Jd=1sIRs1
Y=8IN{X)
CONTINUE
CONTINUE
RETURN
NI

F R

(.
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Computer Code - 3

Lo =CYLINDRICAL COORDINATES
Com —m=LASER SPECKLE INTERFERD
oT—— TEMFERATURE CALCULATOR

C

1

S LIk

i

WRITTEN RY JOHN A, SCHA
WRITE(Ss1)

FORMAT(’ INFUT: SFsEsFS
READN(Ss2) SFsEsSI
FORMAT(3F10,0)
WRITE(Ss4)

FORMAT (7 INFUT RyTHETA:Y
READC(SGsS) RsToD
FORMAT(3F5.0)
X1=(R-INXCOS(T*3,1415%9/
Y1=(R-DIXSIN(T*3,1415%9/
X2=(2, kD) XCO8(TX3,14159
Y2=(2, kD) XSIN(T*3.14159
IX1=INT(X1%1000./8F)
IY1=INT(Y1%1000./5F)

L IX2=INT(X2%1000.,/5F)

IY2=INT(Y2%1000./8F)
IF(IX1.NE.O0) CALL XADV(
IF(IY1.NE.O) CALL YADV(
WRITE(S+6)-T:-

METRY
CODE
EFFELs JR.

I-3F10.07 )

NR=-3F3.07)

180,
180.>
/180.)
/18043

IX1+3)
IY1is,5)

FORMAT (/ FRINGE SFACING AT”s1XsFS.1s1Xs DEGREES”)

READ(S»7) DH
FORMAT(F5.0)
A=(R-D)XSFXE/IIH
IF(IX2.NE,0) CALL XADV(
IF(IY2.NE,0) CALL YADV(
WRITE(S+8)

IX2+:53)
IY2+5)

FORMAT(’ FRINGE SFACING AT s1XsF3.1+1Xy 'DEGREES)

READN(S»7) LIH

B=(R+D) X8FXE/DH
C=(((B~A)/(2.X1))/RIXSI
WRITE(Gy%?) C

FORMAT(’ DELTA TEMPERATURE CHANGE=’sF3.1)

IX==(IX1+IX2)
IY=-(IY1+IY2)
IF(IXWNE.OY CALL XADU(I
IF(IY.NE.O)Y CALL YADV(I
GoTo 3

STOF

END

Xs3)
YsS)
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Computer Code - 3 (Continued)

gy

Py =

oD

b3 e

&

SUBROUTINE YADV(ISs IR
I8=N0, STEFS (4=FW0e—=REW)
IR=ADVANCE RATE OF STAGE
X:O ’

IF(IS.6GT.0) GOTO 3
IF=TARSC(ISY

0o 2 I=1s1Fsl

CALL IFOKE("187772y"020000)
00 7 K=1sIRs1

Y=8IN(X)

CALL IFOKE("1877725000000)
[0 1 J=1sIRs1

Y=SIN(X)

CONTINUE

GOTO &

CONTINUE

0o 5 II=1-18,1

CALL IFOKE("167772y"010000)
10 8 KK=1yIRs1

C Y=SIN(X)

CALL IPOKE("167772:"000000)
o 4 JJd=1isIRvsl

Y=GIN(X)

CONTINUE

CONTINUE

RETURN

END

SUBROQUTINE XaADV(ISrIR)
I8=N0. STEFS (+=FWlsy-=REV)
IR=ADVANCE RATE OF STAGE
X=0,

IF(IS.6T.0) GOTO 3
IF=IARS(IS)

ng 2 I=1sIFs1

CALL IFPORE("1&7772y"100000)
00 7 K=1sIRs1.

Y=8IN(X)

CALL IFORKE("1467772y°0000007
0o 1 J=1sIRs1

Y=8IN(X)

CONTINUE

GOTD &

CONTINUE

Do 9 YI=1s18s1

CALL IPORE("1&67772y"040000)
ng 8 KK=1sIRel

Y=8GIN{X)

CAlLL IFOKE("187772y"C00000)
ng 4 JJ=1lsIRvl

Y=8IN(X)

CONTINUE

CONTINUE

RETUKN

ENT
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LIST OF SYMBOLS

A,B,C,D Constants

Bi Body Force Per Unit Volume

d’dH’dv Fringe Spacing From Laser Speckle Interferograms

;x’;y’;z Cartesian System Unit Vectors

;r, ée,éz Cylindrical System Unit Vectors

E Modulus of Elasticity

f Distance Between Laser Speckle Interferogram and the
Analyzer Plane

G Lame' Constant

i,j,i Cartesian Unit Vectors

1l,m,n Cartesian Direction Cosines

L Length of Specimen

m Fringe Order

nx,ny,nZ Stress Plane Direction Cosines

r;é,z Cylindrical Coordinates

S Film Scale Factor

§§,§§,§% Stress Vectors

t Plate Thickness

u,v,w Components of Deformation in Cartesian Coordinates

UH’ Uv Components of Deformation Determined by Laser Speckle
Interferometry

Ui Components of Deformation in Cartesian Coordinates

X,¥,2 Cartesian Coordinates

Xj Cartesian Coordinates

o Coefficient of Thermal Expansion

o



LIST OF SYMBOLS ( CONCLUDED)

Material Constant

Material Constant

Material Constant

Total Change of Length
Temperature Change

Strain Tensor

Thermal Strain

Angle

Wavelength of Light, Material Constant
Polsson Ratio

Deformation Vector

Stress Tensor

Stress on Plane n

Straln Potential

Fringe Spacing at Radius (r)
Material Constants

Some Region of a Body
Gradient

Divergence

Laplacian
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